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I. INTRODUCTION

The .concept of transition graph has been introduced in [1] in connec-

tion with sequential machine decompositions. It has been shown there

that the study of homomorphic images of transition graphs does facilitate

the derivation of all admissible partitions. (also called partitions having

the substitution property [2, 3I) of a sequential machine.

In this report a simple method is derived for obtaining: all homo:-morphic

images of a given complete or partial transition graph.

This method, consists of the successive application of elementary steps,

corresponding to four types of !'elementary" congruences.

Furthermore, it is shown that the number of elementary steps required

to. derive a given homomorphic image. is. constant, if the original transition

graph is complete and connected.

II. BASIC CONCEPTS

A (transition) graph G is a couple (s, r•), where S is a finite set of

vertices and r a map of a: non-empty subset S1 of S into S.ý'.

If S1=S, the graph is complete, otherwise partial.

The graph G' = (S', r') is a homomorphic image of the graph

G = (S, ) if there exists a map • of S onto S' such that:
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We shall use the notation G' GiP

A cycle C of length k of G -is a~sequence C- (s 0 , s 1 , ... Sk_1)

of k differenit vertices of G, such. that

s s. , (i 1,2,...,k-1) and Sk- I =So"

The vertex s of a partial .G is azsink, if str S-S 1 .

Every graph consists of one or more separate connected parts.. Each

such part contains, either a single cycle or a single sink.

The equivalence relation E on S is. a congruence on G(S, r ) if
s,t •S1  and s T-(E) .= s. •t7(E), i.e., if -1 E • •: E.

Such a congruence determines the factor graph G/E = , where

= S/ E and '=9- , t • denoting the natural mapping of .S onto

Evidently,. GtE is. a homomorphic image of G.

Conversely, if G' .= GV- and E is the equivalence relation on

determined by , then E is a congruence on G and GiE is isomorphic

to G'.

V•£ - denotes the, relational product of the relations ýP' , and



4"

3

Let E 1 and E be equivalences on the set -S such that E' - E

We define the equivalence relation E = E1/E2 on S/E2 in the natural

way: two E 2 -classes belong to the same E-class, if and only if they

are both subsets of the same C I-class.

Obviously, if E = E/E E1 is uniquely determined by, E and1 E2 ' 1
E2 (notation: E1 = E2:*E).

The following lemma is proved in f4]

Lemma 1. Let E 1 , E 2 be congruences on G such that E 1 ' E 2 . Then

E 1/E 2 is a congruence on G/.E2 and GE1 E1EiE 2 ýr G/EV.

It is also easily verified that if E 2 is a congrunce on G, and E on

.G/E 2 ' then E 1 = E 2 *E is a 'congruence on. G. If E is non-trivial, E 1

properly includes E 2 .

III. ELEMENTARY CONGRUENCES

The following four types of equivalence relations on S, the set of

vertices of a given graph G,. are easily verified to be congruences on G.

They will be called elementary congruences (on G).

Let (s. 0 = S , r . k. s be a cycle of length

k and p a prime divisor of k.

k
Then s -"s k ii (mod-').

p
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Type E.,. Let s and t be vertices such that s 1t1t.

Then s t(Eý,).

Type 'Ea, Let C 1 and C2 be different cycles, both of length k,

and let sI, s2 be arbitrary vertices of C. l C2' respectively.

Then s.lrJ 2 s2 J (E]j) (j = 0, 1 ..... , k-1).

Type EC .Let s be .a sink , and t an arbitrary vertex.

Then s Zt(E.

We shall denote the identity congruence as A4. Also we shall write

Elp9 E2 to indicate that E includes E 2 properly.

Theorem 1. A congruence E i Z-\ on a given graph G is elementary

if and only if for every congruence "E' on G

E:rvE'--l• El =,6.

Proof. Evidently, if E is an elementary congruence, it does not

properly include any congruence E' ll on G.

Conversely, assume E 0 48 and. E :AE', for every congruence E' #_

on G.

There exist two vertices s,. t such that s - t(E). We shall distinguish

between five cases (A-E) where A, B, C, cover the alternative that s and
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t belong to the same connected part ,o G; DE, - s and At belong

to different parts ,a( G.

Case A. There exists a positive integer h such that s-h-t th

Then the congruence E. defined by:

s ,h-1 hin*sA~- --tIh' (E')

is elementary of type E' andE E' ,'" A . Hence E E'.

Case B. There exists a non,-negative integer h such that

ar h= u v = tph and u,v are both on the same cycle C (of length k).

Let v = u t m, let d be the greatest common divisor (g. c. d.) of

m and k, and p a prime number dividing ". We define the elementary

congruence E' oftype. E, by

u up.u J.() i 5 j (mod k)..

Then E Q E' /A .. Thus E"E', i.e., E is elementary.

Case C. The vertices s and t belong to the same connected part of

the graph, without satisfying the conditions of cases A and-B. Thus,
h h

there exist non-negative integers h1 ,0 h2 such that s t' 2 is

a. sink.

Say h 1 > h 2 . Then the congruence E` defined by s t I (E)

is elementary, of type E 0., and satisfies E.E' E A . Hence. . - E!.

Case.I D. The verticeas s and t belong to two different connecated
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parts., containing cycles C 1 and `C2 of length kI and k 2 respectively.

Then there exists a non-negative integer h such that a r h u v'=

t•h•(hE) and ueC 1 , v. C 2 . Let d be the g.c.d. of k1 and k 2 . If,

say, ,k1> d then the congruence E' given by

u .u Pj(E') ¢ i sj (mod d)

is properly included in E. Hence k1 = k2 = d, and the elementary con-

g:ruence 7E'' of type E. merging cycles C 1 and C 2 satisfies'E•E" #4.

Therefore, E -'E, I i.e., E is elementary.

'CaaeE. The vertices s and t belong to separate connected parts

and there exists an integer h ; 0, such that s. U•h (or alternatively t • h)

is a asink, whereas t ' j :(sa r respectively), j .h, is, not a sink.

Then E', defined by s r h ý.t ph. (E) is, elementary (type Er),

and E -. E' I Z. Hence E ]E.

Theorem 1 is thus proved.

Theorem 2. If G' is, a homomorphic image of G, there exists a .series

G =GO, G1.1. G r=G

such that G+ (i = 0,1, 2.... r-1) is a homomorphic image of G, and

the congruence on G. determined by G$+1 is elementary.

Proof. Let E be the :congruence on G determined by G',. If E

is elementary, there is nothing to prove. Otherwise, by=Theorem 1,
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there must exist an elementary congruence EV, such that E zEI1

G1 = GiE 1 is a proper homomorphic image of G, and, by Lemma 1,

G/.E /E iE1 `• 'WG

Hence G' is a homomorphic image, of G1 . 7Replacing G by G1 in

the above reasoning, we obtain a graph G2 = G1/E 2 where E 2 is

"elementary and G' is a homomorphic image of G2 .

Continuing this process, which must terminate after a finite number of

steps, the series (1) is obtained.

IV. JORDAN-DEDEKIND CHAIN CONDITIONS

A series of type (1) is clearly refined, i. e., no additional graph G.

can be inserted between any two elements, of the series, such that the

new series still satisfies the conditions of Theorem 2.

Generally, given G and G', there exists a number of essentially

different refined series. from G to G'. The following two examples

show that such series may even be of different lengths..

Example 1.

,G: GI:

Series No. 1: Go= G; G 2
2* 3

G2' • G3 1G2

Series No.. 2: G= G1 I:•2' G



Example 2.

Series No 1: G G0, GI: . , G2  G

Series.No-2: :G = G0 , Gi:

G 2: .... •ý G 3 =G'

However, for connected, complete graphs. the following holds:

Theorem 3. Let G be a complete, connected graph and G' a homo-

morphic image of G.. Then every refined -series of type (1) from G to

G' is of the same length.

Proof. Let G = G.0, G1, V... Gr = G' be a series of the required

type and

El, E 2 ... E (2)

-the corresponding-.congruences. It follows from the proof of Theorem 1,

that each Ei is either of type. E , or E

Now, let ni be the number of vertices of Gi and -.:ki its cycle length.

If E. isoftype E. , k ki_1, and n -J .

ki. 1
If E. .is of type E, then. is prime.

k h h2  hm
0 .1 2 m -OLet now = p1 P P2 " °.Pro be the decomposition of into
r rprime factors. Then the number of E. of typeEc. in (2) equals.

h =zh +h +... +-h1 12' 'n
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Now th•e Ep steps. have to decrease the number of vertices by

hý = (n0 - k 0) (nr - kr). Thus, r =h,,4h,, i.e. , r is independent

of the particular series, chosen.

It follows from Theorem 3 that the lattice of congruences of a comrn

plete, connected graph satisfies the Jordan-Dedekind chain condition.

However, this lattice is in general. not modular, as shown by the following

Example :3.

The lattice of congruences of G coincides with the lattice ofj equivalences

of the set of its vertices, which is known to be non-modular.

V. CONCLUSIONS

Considering applications to sequential machines (finite automata), we

have obtained in this report a direct method to derive all admissible par-

titions of a single-input, complete or partial machine.

Although this method is als.o useful in connection with multiple-input

machines, the derivation of an efficent algorithm to obtain all admissible

partitions of such a machine requires further investigations..
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